
OtN V"•:T 7MATING THE RELIABILITY OF A COMPONENT

:tUBJECT TO SEVERA- DIFFERENT STRESSES

by

Satish Chandra

Technical Report No. 109
Department of Statistics ONR Contract

November 22, 1971

Research sponsored by the Office of Naval Research
Contract N00014-68-A-0515

Project NR 042-260

Reproduction in whole or in part is permitted
for any purpose of the United States Government.

This document has been approved for public release
and sale; its distribution is unlimited.

DEPARTMENT OF STATISTICS
Soutnern Methodist University

it



UNCLASSIFIEDS... . -•,'L l a-t( i,.% fic'atLwnr

DOCUMENT CONTROL DATA. R & D
S", c11M .1 titll, body of alra, , ..ed indexhil,'#nm, ',Ii,.n ni-I be we'ed I..hen the ovetall report in cla..iflod)

I OIGIN A TINO AC TIVITY (Lotporate oothnr) 20. RE-ORT SE URITY CLASSIFICATION

UNCLASS I FIED
SOUTHERN METHODIST UNIVERSITY 2b. GROUP

UNCLASSIFIED
REPORT 'IILE

On estimating the reliability of a component subject to several different stresses.

4 CFSCRIP TIVE NOTES (Type of report mid JnCetufii datee)

Technical Report
b AU ?ORIS1 (Firsl name, middle Intllal, last name)

Satish Chandra

I RI•PORT OATE Ta. TOTAL NO. OF PAGES T7b. NO. OF REPS

November 22, 1971 55 18
&a. CONTkFACT OIR GRANT NO .. ORIGINATOR'S REPORT NUMSDER'IS

N00014-68-A-0515
b. PROJECT NO. 109

NR 042-260
C. 9b. OTmItR REPORT NOISI (Any other minumbers sht may ha seehigumd

this report)

d.

10 DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is
unlimited. Reproduction in whole or in part is permitted for any purpose of the
United States Government.

I1 SUPPLEMENTARY NOTES 12. SPONSORING MI64LITARY ACTIVITY

OFFICE OF NAVAL RESEARCH

I, AOSTRACT

A great deal has been written concerning the estimation of the probability and
testing of whether one of two random variables is stochastically larger than the
other and its relationship to the estimation of reliability for stress-strength
relationships. A more general problem is the estimation and testing of whether one
of N + 1 random vari..blus is simultaneously stochastically larger (smaller) than the
others. An initial paper ý;hich deals with this problem for the special case N = 2 is
that of D. R. Whitney (1951), "A Bivariate Extension of the U Statistic," where he
provides a test function and discusses the asymptotic normality of the statistics
proposed under the null hypothesis that all the random variables have the same
distribution function.

In this dissertation, the problem of estimation of the probability of whether
one of N + 1 mutually independent random variables, each having a continuous cumula-
tive distribution function, is simultaneously stochastically larger (smaller) than
the others has been considered. Parametric and nonparrmetric methods of estimation
are discussed. Applications of the problem involve the estimation of reliability from
stress-strength relationships, where a component is subject to several stresses (sev-
eral strengths) whereas its strength (stress) is a single random variable.

Minimum variance unbiased estimates are provided in certain cases, whereas in
some cases the maximum likelihood estimates are given. For a more general situation,
where only continuity of the cumulative distribution functions of N + 1 random varia-
bles is assumed, a statistic W, somewhat similar to the Mann-Whitney U statistic, base
on ranks of the pooled sample values from all the random variables, has been suggested

and shown to have certain optimum properties; i.e., it's an unbiased G consistent est.

DD ,NOV .,1473 )UNCLASSIFIED
S/N 01I0O•07.6801 Security Clasmsfication



CHAPTER I

INTRODUCT ION

In the past few years, many authors (e.g., Z. W. Birnbaum, McCarty,

Church, Harris, VanDantzig, Govinderajulu, Mann, Whitney, Mazumdar, Owen,

Sen, etc.) have attempted to estimate and give the confidence bounds for

the reliability of a component using the probability arguments of a cer-

tain physical model of failure. According to this model a component fails

if at any moment the applied stress (or load), say Y, is greater than the

resistance, say X. That is, the problem here is to find an estimate of

the probability that X is less than Y, where X At'A Y are both random

variables, having some known or unknown probability structure, and to find

the confidence limits on this estimate of the probability. An extensive

amount of work has been done on this problem by the above mentioned

authors and many! others, and some, for example, Mann and Whitney [9],

Mazumdar [10], Church and Harris [3] etc. have given practical uses for

the results.

The question now arises of what to do if at any moment the applied

stress (or load or force) may not be measured in terms of a single random

variable, but can be measured in terms of several random variables, say

XiX 2, ... ,XN, and the resistance is still a single random variable, say Y.

These random variables XI,X 2 ,...,XN.,Y may have a known (specified) prob-

ability structure to a certain extent or the structure may be completely

"l--



-2-

un~pecified except that in this latter case independence of the X's is

assumed. In some cases, it might be possible to arrive at a suitable

mathematical model which allows one to compute deterministically the

"over-all stress" at different points of time corresponding to a given

set of "initial stresses," and initial conditions, but it may not be pos-

sible in all the cases. especially when all the initial stresses are

random variables. For example, the over-all stress, say X, may be a

suitable linear combination of all the initial stresses X1,...,XN, with
N

X1,...,XN being random variables. Thus, writing X - CiXi , C-is

being real constants, the problem is to estimate Ci's, the parameters

involved in order to estimate the over-all stress X. A robust way to

estimate these constants is still under consideration. Some authors have

attempted to estimate these constants using the mixture of probability

distributions techniques in some simple cases, for example when N - 2

and X1, X2 are independent normal random variables. The problem is even

more complicated if the over-all stress is a nonlinear combination of the

initial stresses.

In many cases, a component does not fail if all the different

stresses Xl,...,XN are simultaneously less than the resistance Y. Then,

a measure of reliability of a component subject to several different stresses

during a given period (0,T] is taken to be the probability that all the

different stresses are simultaneously less than the resistance during the

entire interval, i.e.

(1.1) p - Prob {X1 < Y, X2 < Y,..., XN < Y}.

Church and Harris (31 and Mazumdar (101 considered the example ok
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missile flights, where the several different stresses are the propulsive

force, angles of elevation, changes in atmospheric condition, and so on.

They assumed that all these different stresses have known distributions,

and a mathematical model is available to compute the over-all stress,

and also the distribution of over-all stress is known. However, these

assumptions might not be true in a given physical situation.

Another similar problem of interest is that where during a given

time period [0,T] the stress or force could be measured in terms of one

random variable, say X whereas a component might consist of several dif-

ferent objects subject to different resistances. For example, suppose

the electric current is supplied to a component consisting of several dif-

ferent transistors each of which has a different capacity to resist the

current. Thus, the component breaks if the current supplied to the com-

ponent exceeds the capacity of any of the transistors. Hence, denoting

the stress or force of the component by X, and the several different re-

sistances by Y1 ,Y2 ,...,Y N the component does not fail if the applied

force or stress X is simultaneously less than the several different resis-

tances. A measure of reliability of a component subject to single force

and various resistances during a given period [O,T] can be taken to be the

Probability that the applied force is simultaneously less than the several

different resistances during the entire interval, i.e.

(1.2) q Prob {X < Yl,....X < YNY .

where X,Yi,...,YN are all random variables.

The principal objective of the material presented here is to esti-

mate p and q defined above.
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Chapter II consists of parametric estimation of p, assuming that

Xt,... ,XN,Y have certain probability structures.

Chapter III consistc ^f a non-parametric approach to estimate p

for a much more general situation, i.e., XIS,...XNY are All independent

random variables having different absolutely continuous distribution

functions. A statistic is proposed and shown to estimate p unbiasedly.

The variance of this statistic is computed and used to show that this

estimate of p is consistent.

Chapter IV is devoted to the estimation of q. Analogous results to

Chapter II and III are given and some more results of practical importance

are included.

Finally, Chapter V consists of a summary and suggestions for further

research.



CHAPTER II

PARAMETRIC ESTIMATION

2.1 Introduction

Owen, Craswell and Hanson [12], Govindarajula [5], Church and Harris

[3], etc. have given maximum likelihood estimates and confidence intervals

for Prob {X < Y} under the assumptions that X and Y have a bivariate nor-

mal distribution with some parameters known, and for the case when X and

Y are independent, and when they are paired. Mazumdar [10] has given the

minimum variance unbiased estimate for Prob {X < Y} when X is assumed to

be normally distributed with known mean and known variance; also Y is

normally distributed with unknown mean, known or unknown variance and X,Y

being independent. He also derived interval estimates for these cases.

In this chapter, we shall consider the estimation of tiae probability

that N random variables X1,....,XN are simultaneously less than a random

variable Y, where these random variables are mutually independent.

2.2 Useful Lemmas

Let XI,...,XNY be (N + 1) mutually independent random variables with

continuous cumulative distribution functions (c.d.f.'s) FlF2,...,FN,G

respectively and let

(2.1) T - max(Xl,...,XN)

and have a c.d.f. H. Also, let

-5-
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p -Prob(Xi < Y,...,X < Y}.

Then, the problem of estimating p is simplified using the following lemmas.

Lemma 2.1

P(X 1 < Y....,XN < Y) - P(T < Y).

Lemma 2.2
N

H(t) , P(T < t) = 11 Fi(t).
i-I

Proof

H(t) = P(T < t) - P(max(XI,... ,XN) < t)

=P(Xj < t,...,Xý' < t)

- P(X1 _ t) ..... P(XN< t)
N

- r[ F it).
i-1)

Since H(t) is a function of continuous c.d.f.'s 11(t) itself is continuous

and so the probability of getting ties from the c.d.f. H is zero. More-

over, the random variable T is independent of the random variable Y.

Now, suppose F1 - F2 -FN - F, i.e., the random variables Xl,...,XN

have the same continuous c.d.f. F. Also, F has the density f and Y has

the continuous c.d.f. G with the density g, and all these random variables

are mutually independent. Then, the density function of the random vari-

able T - max(X 1 ,...,XN) is given as

(2.2) h(t) - N(F(t))N-1 f(t)

and thus,

Lemma 2.3

(2.3) p - f [F(y) ]N dG(y)

_.C
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Proof

p = P(T < Y)

- EP(T < YJY)

- [F(y) ]N dG(y)

Lemma 2.4

If F 1 = F2  FN - G, then

1
p Nm

Proof

In this case, from Equation (2.3)

p - f FN(y)dF(y)

-.0

uN 1uS u du N+
N+l

0

2.3 Estimation of p when X1 ,X 2 ,.. .,XNY are all independent normal

Let 0 and • denote the cumulative distribution frunction and the

density of a standard normal random variable respectively, i.e.,

(2.4) 0(y) - 1 e-1/2 y-
(27r)/ 2

and

(2.5) 0(x) - I (y)dy.

Further, let the different stresses XI,...,XN be all independent and
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identically distributed normal random variable with mean 1j, variance 02.

Also, let Y be normal with mean v, variance T2 and independent of all the

X's. Then by lemma 2.3,
1 21 ,

[ IY J- 1 e TY(x- ')2  N 1-e-T -
S1/2dx] 1/2

O WQ) ar (2)1) T

f JtN( + Tz- V) (z)dz

OD ( T)21/2 z + ~. 1 1/2
_ P __N)2 + zdz

J-NO + 1-a 1/2

rN 1/2+N (P z + H) $(z)dz

(10)1/2

-F N(H; p) , say

T
2

where 0 +

(C 2 + T2)1/2

The function FN(H,p) has been tabulated by ShanH• S. Gupta [6] for given

values of n(> 0), N and N. FN(H,P) -s the probability that each of N

standarized normal variables wibh equal correlation p will not exceed H.

This is the case in the present problem, since

P(XI < Y,....XN < Y -= PIX- Y <N.... N Y < 0}

p. (Y-Y) - (P-v) < _ (XNY) - (jj-V)

I @2+ T2)l
2  (2 + T2)1/2 (a2 + T2)1/2

((#2 + T2)1/2
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For all i 1,...,N, the random variable

(Xi - Y) - (p - V)

(2 + T)2 1/2

is a standarized normal random variable. Moreover, for i J j, the cor-

relation coefficient between

(Xi Y)O4v (X -Y)-G(-V)2
( 0 2 - 2 1 / 2 -an d 2Xj - -- is T '

((2 + T2)1/2 (02 + T2)1/2 C

FN(Hp) also gives the probability that the minimum of a set of N

equally correlated standardized normal random variables exceeds -H.

Thus, if 11, v, a2 and T2 are known we can evaluate p using Gupta's

table. However if v, v, 02, T2 are unknown, or some of them are unknown,

we can use their maximum likelihood estimates. If p, v, O2 and T2 are

unknown, and if the samples

x il'',.,xin i i =I..N

Y ,...gym

are available, let
n4

xi n x ii

ni

i i j.1x - x,. - x i):

N
N

N
E n sI a

a 2 BIft
N

E n
i-il
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y m EYk

k.I

(S,)2 E (y
"m k-1 k-

Then, the maximum likelihood estimate of p, in view of Zehna's [18] result

that the maximum likelihood estimate remains invariant although p is not

a one-to-one function of W, V, C
2 and T 2, is

p F FN(H, •)

where 8 = s +(s') '

AY - x

(S 2 + (8,)2)1/2

This estimate, again, can be evaluated using Gupta's table [6], however

the properties of this estimate are extremely difficult to explore.

2.4 Minimum Variance Unbiased Estimation of p in Some Cases

Let X, Y, Z be independent normal with means PxI iy and jz respectively

and equal variance U2. Then we want to estimate

p - P{X < Z, Y < Z}

a P{X - z < 0, Y - z < 0)

Now, (X - Y - Z) is bivariate normally distributed with means (1x - Vy'

Iy - Pz and covariance matrix

~2(2 1)
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Thus,
(X - Z) - (Ix - IJz) lz -I1x

(2) a (2) /

(Y -Z) - (V X -VIZ) <i P l '

(2)12 a (2) 1 2

Now, ((X -Z) - (P x- lz) (Y - Z) (W (y - •z)

(2) 1/2 a (2)1/2 0

is bivariate normal with zero means, unit variances and correlation coef-

ficient equal to 1/2. Thus

pz -Bx Vz - P vp B( (2) a/C (2)l/ a

where
1 fhJK I(xi 2 X 2pxy+y2)

(2.6) B(h,K,p) 1/2 e 2(- - dxdy
2Tr(ip

2 ) 1/2

D. B. Owen (11] considered evaluation of the function B(hK,p) using the

related function T(h,a) defined by

1 a exp{- _42 (1 + X2) )
T(h,a) 2-. J l+x + dx2

0

He derived various relations connecting B(h, K, p) and T(h,a). The func-

tion T(h,a) and its differences are tabulated hy Owen in ll]. Using his

tables and relations one can obtain the volume under a bivariate surface

over any polygon.

Assume that samples (xi,...,xI), (yl,...,ym) and (z,...,zn ) are

available. If PxP Py' 9z' and a are unknown, we substitute their maximum
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likelihood estimates to obtain the maximum likelihood estimate of p as

SB ( Z - X -

(2) 1/ (2 2

where
- 1

iml
= 1 y

mi-l -3

n
E- z

n k=1

and
m n

8 Z+M+n1 E -+)2 + EdZ _ )21= C (x. - x) 2 + -(Y

1 11

Theorem 2.1

If the means pX9 p y and variance a2 are known, but vz is unknown

and the data (zl,...,zn) on Z are available, then the minimum variance

unbiased estimate of p is given as

z - vx z - Py n-l

0(2 - 1 )(2 - -)

n n

where I n
- i zz n k lk

Moreover, this estimate is asymptotically equivalent to the maximum like-

lihood estimate.

Proof

Let W and V be independent normal random variables, independent

of Z, with means 0 and variance ao, and let
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1 - if -zg + W < -U x -zI + V < -Uy
0 otherwise

then

E(I) - P(-zl + W < -ix 9 -z, + V < -I )

(-Z + W + iz <z - •x -zI + V + z (z < 11 Y )

(2) a (2) a/2o (2)l 2 C (2) 1a

Ijz - lix z -Ii 1
B( 1/2172
(2) CT (2) a

p .

Since ( 1/2 z -yj + V + ) is bivariate normal with zero
(2) 1/2a (2) 1/2a

means, unit variances and correlation coefficient equal to 1/2.

Since z is a complete sufficient statistic, it follows from the Rao-

Blackwell and Lehmann-Scheffe' theorems that the conditional expectation

E(lIz) is the minimum variance unbiased (m.v.u.) estimate of p.

Let N p(V,E) denote the p-variate normal distribution with mean vec-

tor p and variance-covariance matrix E; then,

(F(i,) 2 a(: 2- a,2- aj 2aT2))

where - denotes "distributed" as.

Now, using 8a.2(v), Page 441, Rao [14], the conditional distribution

of (-zl + W , -zl + V) given i is

n n

-y 2G,.2 2i, €I

n n•=~m
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and the conditional correlation coefficient is n-
2n-l

Thus,

p E-•,z) - P{-zj + W < -p , -z + V <-y

-Z, +W +i :-x -z 1+V+-. < 31 [02•1/2 1 )1/2 ' 1 1/2< 112

n 2--n 2 na(2- na

i.e.

A z - -x i - y S" •( -1,2 ' 11/2 ,' .in-!
B (2- 1)1/2 " (2- n_-)

and the maximum likelihood estimate of p in this situation is

B( z , -p i

(2) 1/2a (2) 1/2 2

Thus, as n becomes large, the minimum variance unbiased estimate approaches

in the limit to the maximum likelihood estimate.

Theorem 2.2

If the mean 14 and variance a2 are known but the means px and vy are

unknown, and the data (xl,...,x) , (yl,...,ym) on X and Y respectively

are available, then the m.v.u. estimate of p is given by

-Iz -x liz -y 1
p B( 1 1/2 1 1/2 1 1 1/2

a(2- 1) a(2- M) [(2- t)( 2 - -H

where

"i-i

m jlI

Moreover, as Z and m become large, this estimate approaches in the limit

to the maximum likelihood estimato.
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Proof

Using the same technique as in the proof of Theorem 2.1, let W be

a normal random variable, independent of X and Y, with mean 0 and variance

2y , and let

I if x, + W < P , y + W < 1z

0 otherwise.

Then

EM P(x1 + W < jz P Y, + W < 11z)

PxI + W - x <z - N Y2 + W - ay < z - y
(2) 1/20 (2) 1/2t, ' (22)/2(

Il - Ax 1Z - 1y 1 I"(2) a (2)1/20 ' 2

Since (x,y) is a complete sufficient statistic, it follows from the Rao-

Blackwell and Lehmann-Scheffe' theorem that the conditional expectation

E(Ix,y) is the m.v.u. estimate of p. Now

(X2 2 
_

y0 2i 2

( )20 20. 2 2x I + W ) lx y o 2 a22
Yt + W 1y 0 -- a2 20

y m

Using 8a.2(V) Page 441, Rao [14], the conditional distribution of (xi + W,

y , + W ) given (x ,y) 2 2C 2_s 7

N2,

C G2 20F2 -

ai i l li ||
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and conditional correlation coefficient is 1 1
((2 - t)(2 - )]11

m
and hence the m.v.u. estimate of p is

Px 1 + w < -P , + W < V y+ - <,p z z
li1z -x U.±2zL ~ Z3

- 1/211 1/12)1/2 11/2
C( c ( a2- a)/ a(2 - 4-)m M

V 1 1 12 - 1 1/ 2 1 1 1 ,". 7 2 )
a(2 - V•a(2 - )1) ((2 - V)(2 - 1)]1

and this estimate is asymptotically equivalent to the maximum likelihood

estimate as X, m become large.

__________



CHAPTER i I

NON-PARAMETRIC ESTIMATION

3.1 Introduction

Mann and Whitney [9] proposed a U statistic which estimates unbiasedly

the probability that X is less than Y where X and Y are both random vari-

ables. The U statistic is based on the ranks of observations in the pooled

samples of X's and Y's. It is also used for testing the hypothesis that

X's and Y's come from the same population versus the alternative that X

is stochastically smaller than Y. Many properties of this estimate have

been discussed by numerous authors.

Here, a statistic is proposed to estimate the probability that all of

the N random variables X1 , X2 ,. .,XN are simultaneously less than a random

variable Y. It is assumed that X's and Y's have continuous cumulative

distribution functions (c.d.f.'s) and that all are mutually independent.

Some properties of the proposed estimators are also discussed.

We shall first start with the 3imple case when N - 2. Let X, Y, Z

be mutually independent random variables with continuous c.d.f.'s Fi, F2

and G respectively, and let

(3.1) p - Prob{X < Z , Y < Z)

Again let

(3.2) xl,...,x z ; y 19,...,gym ; z ,...,z n

be samples of X, Y and Z respectively. Furthermore, we arrange the samples

-17-
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of t x's, m y's and n z's in ascending order and let W count the number

o' times an x and a y precedes a z, i.e.,

W number of triplets (xi, Yj, zk) such that xi < z and yj <2k

w
k =1,...,n

then W - can be used to estimate the parameter p. The properties

of this particular estimator will be explored in the following sections.

.�. Fst n-iti-on of p and an Example

Ie: s;••iDes (.,2) be available and let

Siy x < %k

i k'" j 1 4 x

j k
1jk 0 otherwise.

Furthermore, let

Uijk a ikb jk'

then z

W E Z E E abikbjk
i-1 J-1 k-l

Lemma 3.1

w
- is an unbiased estimate of p.

Proof

SF E E(Uik

1 mmn

"Tm-n Z T p p.ijk
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Since Uijk - 1 if and only if (iff) xI < zk and y < zk and so

E(Uijk) - P(xi < Zk , Y < zk) - p

Example 3.1

Let Z - 4, m - 3, n - 2 and consider the observations

X2 < Y6 < Z2 < Xo < x4 < Yw < zi < Xl < Y2.

There are 6 values of (x,y) which are less than z,.

There is 1 value of (x,y) which is less than z2.

Thus the experimental value of W is

w=6+1i"7,

and 7

p i4

Also

all , a21 l 1, a31 =0, a4l = 0, a12 - 0, a22 1 1, a32' 0,

a42 -(

and

b -= 1, b 2 - 0, b 3l - 1, b 12 = 0, b 2 2  0 0, b3 2 = 1,

so that
4 3 2= 1 7 a

P mn i4 J11 k1- ikjk " 24

3.3 Properties of p

In this section we shall compute the variance of • and use this

variance to show that p is a consistent estimate of p. Let

T - max(X,Y),

and H denote the c.d.f. of T which is continuo:s because H is a function

of c.d.f.'s of X and Y and the c.d.f.'s of X and Y are continuous by as-



-20-

sumptton. Then

p - Prob{X < Z, Y < Z1

= Prob{T < ZI

E S Prob{T < ZIZ}

(where E denotes the expectation operator)

"=r dG(z) dii W

ll(z)dG(z)

i[,e.,

(3.4) p = r H(z)dG(z)

J

Also,

i-p = PfZ < T)

- ET{Z < TIT}

= fG(t)dH(t)

Thus,

(3.5) i-p = F G(t)dH(t)

Now, let

2= 02 = E [H(z) -E (H(z))]2
H(z) z z

[11(z) - r1l(z)dG(z)]2dG(z)
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r(H(z) - p) 2 dG(z) using (3.4).

Thus, it follows that

(3.6) fHz(z).G(z) _ *2 + p2.

Again, let

x2 OG(T) ET[G(T) - ET(G(T))]2

"F r(G(T) - rG(T)dH(T) J
2 dH(T)

-40 -M

([G(T) - 1 + p] 2 dH(T) , using (3.5)

Hence,

(3.7) F(1 _ G(t)) 2 dH(t) - X + p

We shall use the above relations in deriving the variance of ^.

Also used are m n

W = E E E Uiijk
ij k

and
E(W) - Imnp

Theorem 3.1

The variance of W is given by

Var(W) - mnf[ (m-l) j2 + (n-1)(I + m - 1)X 2 + (i +-r -M )p

+ {(n-1)(2 + m - 2) - lip 2 ]
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Proof

Var(W) - E(W2) - (E(W)) 2

- E(W2 ) - (.Mnp) 2 ,

so that we need to compute E(W 2 ).

Sm n
E(W 2 ) - E( Z E E U ijk)2

i-i J-i k-l

z t m m n n
- E(E E E E E Uijk Ui,,k,)

ijl i'-l J-l J'-l k-l k-il

To compute this expected value we shall consider the following cases.
i) i- i', ', k '.

Here UVik U - U2  1 if and only if (iff)

xi < zk and j < zk

Thus,

E(Uijk Uij'k,) ' P(Xi < Z k Yj < Zk) p.

ii) i - i', j - j', k # k' .

Here Uijk Uijk, - 1 iff max(xjYj) < zk and max(xjYj) < Zk'

i.e. iff t < zk and t < zk,

where t - max(xjYj)

thus
E(Uijk Uijk' P(t < zk and t < zk,)

- EtP(zk > t , zk, > tft)

-r(t) r dG(z k) r dGCzkV)
-w t t

since for k 0 k', zk9 zk, are independent
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a (1 - G(t)) 2 dH(t)

. X2 + p2  using (3.7).

iii) i - V, j ', k •'

Here Uijk Uijtk, I 1 iff max(xiYj) < zk and max(xjtyj,)< zk'

i.e. iff ti < zk and t 2 < Zk't

where ti - max(xi,Yj)

t2 - max(xitYj I)

Note that tz may be equal to t2 with nonzero probability, i.e. when t1

and t2 are the same observations. Thus

E(Uijk Uij'k,) m P(t' < zk, t2 < ZkItI - t 2 = t)

+ P(t, < zk, t2 < Z k, t' 0 t 2 )

SX2+ p
2 + p

2

x x2 + 2p
2

using case (ii) and noting that when t1 0 t 2 and k 0 k',

P(t 1 < zk , t 2 < Zk,) = P(t' < zk)P(t2 < zk,) - P

iv) i - i', j J', k k'.

Here Uijk Uijtk - 1 iff max(xi,Yj) < zk and max(xj.Yj,) < zk

i.e. iff tj < zk and t2 < Zk f

where ti - max(xiYj) and t 2 - Max(xiYj,)

Again, tj may be equal to t 2 with nonzero probability. Thus
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E(Uijk Uijlk) - P(t1 < zk t2 < Zkit'= -t = t)

+ P(tt < zk , t 2  < Z k t' @ t')

= P(t < Zk) + E zkP(t 1 < k I t2 < ZklZk)

= P + fdG(zk) dH(t,) f zk dH(t 2 )

W p + F (H(zk)) 2 dG(zk)

= p + V2 + p 2  using (3.6).

v) i i', j - J', k W k'.

By symetry as in case (iv) we have

E(Uijk Ui'jk) _ p + p2 + p2

vi) .i i', j J', k 0 k'

By symmetry as in case (iii), we have

E(Uijk Ui'jk,) M X2 + 2p 2

vii) 1 0 V, j ', k-k'

Here Uijk Ui'j'k ' I iff max(xi,Y ) < zk and max(xi,,y,) < zk

i.e. iff tj < zk and t 2 < zk

where t1 - max(x 1 ,gy) and t 2 - max(xitYj,).

In this case tj 0 t 2 with probability 1. Thus

E(Uijk Uitjvk) - P(t 1 < Zk I t 2 < zk)

_ p2 + p2 using the result from cast (iv).
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Viii) i 0 iV, j J', k k'

In this case U ijk u Uiljlkl are independent, so that

E(U ijk UitjtkI) P 2

Hance,
m. 2. i n n

E(W2 ) E E T E E(U ikUlll
i-1 Vt -1 J-1 i'li k-1 k'ml ukUjkI

tmLinp + 2lmn(n-1) Q2 + p2) + tn(in-l)n(n-1) (X2 + 2p 2)

"+ in(in-1)n(p +~ *p2 + p2) + L(I-l)inn(p + 0J2 + p2)

"+ 1(1-1)mn(n-1)(X2 + 2p2) + M(-1)in(m-1)n(*p2 + p2)

+ M~-1)m(in-1)n(n-1)p 2

Hence denoting by a 2 , the variance of W, we have

Cy2.E(W 2) - E(W))2

- Xinnp + (n-1) (X2 + p2 ) + (ini) (n-1) 6'2 + 2P2) + (in-1)(p +2 + p2)
+ (JL-lj(p + ip2 + p2) + (2.-1)(n-1)(X2 + 2 p2)

+ (2.-M)m-1)(Vp + P2) + (Z-1)(in-i)(n-i) p2 _ Lump2]

- Luni((LM-1)up2 + (n_1)(9, + a-1)X2 + (2. + M 1)p

+ {(n-1)( + in - 2) - 1lip2 .

Leumma 3. 2

'p2 < p(l-p) , and
(3.8) 

x2<plp

Proof

From (3.6) we have

o < *2 - fo(z))'dG(z) - p
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H~~zdGz - p

*p - p2

Similarly, from (3.7) we have

0 < -2 (1 G(t) )2dH(t) _-P

~ f 1 - (t) dH(t) -p 2

1 1- FG~t)dH(t) _ p2

-p - p 2

Theorem 3.2

P wcm is consistent estimate of p

Proof

Var(ý) - Var(W)

I r- (im-1) y~2 + (n-1) (I + mn 1 )X2 + (L, + in lp

+ {(n-l) (2 + inm 2)-lip 2]

Xm [(2.m-l)p(l-p) + (n-l)(2, + m - l)p(l-p)

+ (2. + m 1 )p + ((n-l)(Z+m-2)-_11P 2 1

Xm [ ((2m + RXn + inn n 1 )p - (Lin + n -l)p
2J

1( 1 + 1 1+*~m- P( 2. ?tTn m Lm In mn

0as i,m,na.
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3.4 On a Use of a Bivariate Extension of the U Statistic

D. R. Whitney [171 considered a Bivariato extension of the U statis-

tic. Let

U - number of pairs (xizk) such that xi < zk,

V - number of pairs (yjizk) such that y < Zk, where

i - 1,..., ,

j 1,..., m;

k - ,...,n.

He proposed a test based on the two statistics U and V to test the hypothe-

sis H that G = F1 - F2 against the alternative that G > F1 , G > F2 or say

G > FI > F2 . As a critical region for the hypothesis H with the alterna-

tive G > F 1 , G > F 2 , he proposed to use U < K1 , V < K2 or with the alter-

native G > F1 > F2 , U > K3 , V < K4 where the constants Ki are chosen to

give the correct significance level. He obtained recurrence relations to

determine the probability of a given (U,V) in a sample of Ix's, roy's and

nz's. He also evaluated moments of the joint distribution of U and V under

the null hypothesis H that G - F1 - F2 and showed the limit distribution

to be Bivariate normal.

Unfortunately, we could not find a suitable statistic based on U and

V to estimate the parameter p unbiasedly. However, the statistics U, V

and W can be used to estimate the product of marginal probabilities, viz.,

PI'P2 where,
pI - P{X < Z}, and

P2 - P{Y < Z}.

The statistics U
p,- •r , and

A -V
P2 a -

urn
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satisfy E(•i) PI , E(E) - P2 * Moreover PI, N2 have other nice

properties by themselves, but

zE(^M2) ÷pxp2

since pi and N2 are not independent. Howevex, the following theorem

gives an unbiased e!,timate of the product PIP2

Theorem 3.3
P- UV - W

P` mn(n-l)

is an unbiased estimate of PIP2

Proof

First, note that

X n
u i- kk , aik and

m n

jul kli

so that
Sn M n

E(UV) -E( E E a k)(Jl kLl bJk,)
iul kil

Z m n n
E( E E E E (ai- b '))i-l Jul k-l k'=lI

Z. m n I. m n n
=E( E E ajkbJk + E E E E aEkbJk,

i-I J-l k-1 L-I Jui k-i k'-li

k 0 k

Smnp + Zmn(n-l)ptp 2 ,

since E(aAkbjk) p and for k 0 V', alk, bJk, are independent, so that

E(aikbjk,) - E(aik)E(bJk,) - PIP2
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Thus, -

P3 2mn(n-l)

UV - W
Srmnn(n-l)

has expected value PIP2

Corollary

If G F1 = F2 , we have p - 1/3 , pi = 1/2 and P2 - 1/2

so that
1 1

E(UV) - 9 mn + 1 £mn(n-l)
3 4

1 mn +i- .1 mnm
12 4

which is the same result as derived by D. R. Whitney [17) in Section 3

for the case G - F1 = F2

Further properties of P are not explored, because it does not seem

to be of much importance except perhaps this statistic may be used to

test the hypothesis that all observations come from the same distribution

function against the alternative that the departure from the null hypothe-

sis is in a certain direction.

3.5 A Generalization

Let Xl,... ,XN,Y be (N+1) independent random variables with continuous

cumulative distribution functions F1,...,FN,G respectively, and

p - Prob{X, < Y,...,XN < Y}

Furthermore, suppose that the samples (x l,,. lm ,),. •,(xN, ... , ) O

(y9,...,yn) of X1,...,XNY, respectively, are available. Then arranging
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the samples in ascending order and defining

a 1 if xij(i) zk

(1) 0 otherwise k-l,... ,n

N mi n N
W- E E E (f aij k)i-1 j i)-l k-l1 -1 (.

and
W

mlm2. .mNn

Then it can be shown that ^ is unbiased consistent estimate of p.



CHAPTER IV

A DUAL PROBLF14

4.1 Introduction

Let X,Yl,...,YN be(N+1) random variables with continuous cumulative

distribution functions F,G 1 ,...,GN respectively. Then, in certain physi-

cal situations, as was pointed out in Chapter I, it might be of interest

to estimate the Probability that the random variable X is simultaneously

less than the N random variables Yl,...,Y N over a time interval (O,T].

Thus, let

(4.1) q - Prob{X < Y1 ,...,X < Y N

This problem is called a dual problem. We shall use the following nota-

tions and lemmas throughout this chapter. Let

T* min(Yi,...,YN),

and suppose it has a c.d.f. H*. Then we have the following lemmas.

Lemma 4.1

P(X < Yl,...,X < Y - P(X 4 T*).

Lemma 4.2

N
H* (t) l 11- (l -- Gi(t)).•

i-l

Proof

H*(t) - P(T* < t)

-P(mi(Yl,...,Y N) - t)

S~-31-



I - lY ' t, Y.? t,...,YN > t}

(Since mir(Yi,...,YN) t 1 > t, Y2 > t,...,YN > t)

I - P(Y1 7 t)P(Y2 > t) - P(Y > t)
N

I - (1 - Gi(t)).
1=1

L0 L ,t ti ,1il ase when N = 2. II*(t) reduces to

t= 1 (t) + G2 (t) - G1 (t)G;(t)

Since 11*(t) Is a function of continuous c.d.f.'s, H*(t) itself is con-

tinuous, and so the probabilitv of getting ties from the c.d.f. H* is

Z. % 'oreovPr the random variable T* is independent of X.

Next, stunpose that C1 = G2 = ... - GN - C,, i.e., the r'ndom variables

Y Y,, ha\v, thie same continuous c.d.f. Also, G has the density g

and X has thu continuous c.d.f. F with densitv f and all these random

variables are mutuallv independent. Then the density function of the

random variahle T* is given as

h*(t) = N(l - G(t)) N-g1(t)

and thus

Lemma 4. 3

r- "if (x)dx

Proof

a- P(X ' T*)

SP(T* > xix)
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- Jci - H*(x))dF(X)

J'(1 - Gx)fxd
-CO

Lemna 4.4

If F Gi G G, then q--- "N~

4.2 Estimation of q When Y13,. "'YN , X are all Independent Normal.

Let Yl,...Y 'N all be independent identically distributed normal

random variables with mean V, variance c2, and let X be normal with mean

v, variance T2 and independent of all the Y's. Then

q - P(X < Y1 ,...,X < YN)

-P(X-Y 1 < 0,...,X-YN < 0)

N.ý( R V (x-Y )-(V-•) "

(o 2 + (21 . r2)1l2) 1/ 2  (02 + T2)1/ :

- FN(f,p).

where 2 2
0" , and

(a2 + Tr2 )

- j-

(a2 + .2 )1/2

Since, for all i 1,...,N, the random variables

x - - (V - P)

(a02 + T 2) /2
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are equally correlated standarized normal random variables with correla-

tion coefficient p. F N(H ,P) can be found using Gupta's table [6]. In

case of unknown parameters we can use their maximum likelihood estimates.

4.3 Minimum Variance Unbiased Estimation of q in Some Cases

Let X, Y, Z be independent normal with means Px' 1 y Iz resvectively

and some variance 02. Then

q - P(X < Y , X < Z)

(x -12 )- (lx " Uy V) <• -1 V
P 1/2•

(2) (2)l /2G

(x - z)-(Vx -w z) < 1_1 _x_

(2) 1/2o (2)1/2a)

(X - Y)- (1 -11v (X - z)-(61x - I)•
Now, ((X-)- -1 (2)l(/JC - ) is bivariate normal with

(2) 1 / 2a (2) 1 / 2cy

0 means, unit variances and correlation coefficient equal to 1/2. Thus

It -j .i -i( Px z x
q B (2)/2 (2) 1/2 '2''

where B(h, k, p) is given by (2.6) .

In case of unknown parameters, we can use their maximum likelihood

estimates. Also, for minimum variance unbiased estimates, we shall state

the following theorems without proof, since the proof is exactly similar

to the proof of theorems 2.1 and 2.2.

Theorem 4.1

If the means Dv' Pz and varlancc 12 are known, but px is un-
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known and the data (xl,...,xn) on X are available, then the m.v.u. esti-

mate of q is given as

(1Jv z -xn-

CO B -_)1/2 - U(2- 1)1/2 ' l/

n n

where
- in

n

Moreover, this estimate is asymptotically the same as the maximum likeli-

hood estimate for this case.

Theorem 4.2

If the mean V and variance 02 are known but the means V and

Pz are unknown, and the data (yl,...,y,) , (zl,...,zm) on Y and Z, respec-

tively, are available, then the m.v.u. estimate of q is given by

( - _Jx z - )jx 1q = B y 1, T 1/2 1 )1/2 ' 1 1 .1 /1 1
a(2- z, a(2- M) [(2- T)(2- m)

where I a
y yj and

J-i

- Zkm
z E , zk

m k-i

Moreover, as k and m become large, this estimate approaches in limit to the

maximum likelihood estimate.

4.4 Estimation of q When X Has a Normal Distribution with Mean p. Variance
02 and Yl,... 'YN are All Independent Exponential.

Let Y1,...,YN all be independent and identically distributed with the
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density function

(4.2) g(y) 0 otherwise,

and the distribution function

(4.3) G(x) = 0 if x < 0
l-e-x if x >0.

Next, suppose that X is a normal random variable with mean p and variance

C2. This might be a practical situation, for example, the electric current

supplied to a component is normally distributed with certain mean and vari-

ance whereas the capacity of the different transistors inside the component

are all exponentially distributed, The component does not fail as long as

the current supplied to the component is simultaneously less than the ca-

pacity of different transistors, othen.'ise it fails.

In this situation, we have the following result.

Lemma 4.5

If X is normally distributed with mean V and variance a2 and

Yj,...,YN are independent identically distributed with density function

(4.2), then
N202

(4.4) q = (D(- •) + exp(-No + -- --(I - O(Nc - 1))
a 2 a

where O(x) is defined by (2.4).

Proof

By lemma 4.3, we have

q [1 - G(x)]Nf(x)dx
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- J f(x)dx + eNx f (x)dx

-W 0

f0  1/2 e 2  l dx + e 2  e dx

(27r)/2 a(•I
-- o 0

[-J•-Nii + N•c 2( N02 0y
= f (y)dy + e +(y)dy

N~a:a

-Nj + N - -

Corollary: If pi 0, a - 1, then

q + eN2 /2 (1

Now, suppose that a random sample distributed as X, say xl ,...,xm is ob-

served. The problem here is to find the minimum variance unbiased estimate

of the q by use of this sample. Letting x x t e am xI, this estimate is

provided by:

Theorem 4.3

If a is known and m > 2, the minimum variance unbiased escimate

of q is 1/2- -N+ N2 (m-l)a 2

(4.5) q - O(m) 2 ) + e 2m

1(m-i)3/2NCF2- m(m-1l1/2-

( a(m) /2[1 + m(m-2)]1/2J

And as m becomes large, this estimate approaches in the limit to the maxi-

mum likelihood estimate of q.
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Proof

Let q - qi + q2,

where q, - 4'(-i/o), and

-Nh + N
2ci2

q2 - e -(N-

To find the m.v.u. estimate of q, it would be enough to find an unbiased

estimate of q which is a function of a complete-sufficient statistic, in

view of the Rao-Blackwell and Lehman-Scheffe' theorems. A complete-suf-

ficient statistic in this case is x and if we can find an unbiased esti-

mate ji of qj and an unbiased estimate q 2 of q 2 which are functions of a

complete-sufficient statistic, then m.v.u. estimate of q will be

Note that 0 (X-)2dx

j (27r) 1/2o e

--00

so that, following Lieberman and Reonikoff [8], the m.v.u. estimate of qj

is given by (m)1/2-
qj . (D(- (in ) 1

(m~l)ll'2o

which is a function of a complete sufficient statistic.

Thus, we only need to find an unbiased estimate of q2 which is a

function of a complete sufficient statistic.
-Nx 2

Let tl - e

Then, -

(t) xj 1 e-N dx
(27) 1/2 ed
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21f 
( e 3 (x !-(G -Na2))

2  -Ni N+2a2
( -]1/ 2 e: d x i e-

(212
-Np + -a

2
-e

Further, let
t2 10 if -w < X2 < Na 2

1 otherwise

then

E(t 2 ) - 1 - Prob(-o < x2 < Na 2 )

-1 - a !y)dy

=1- O(Na-

sInrce t1 Is a function of x1 alone and t 2 is a function of x2 alone,

"*, x; beitn indenendent, implies that tj and t 2 are independent. Thus,

let

t - tit 2 , and

we obtain

E(t) - E(t 2 )E(t 2 )

-NU + N2a 2

= e --2 (1 MY•No )

-q2 2

Thus, in view of Rao-Blackwell, Lehmann-Scheffe' theorems, since x is a

complete-sufficient statistic, E(tjx) is m.v.u. estimate of q2. Note

that ("eNxl if Na2 < x2 < m, and -- < xz <

l0 otherwise

- e Nx1 2(No )(x 2 ) -m < 0 < m
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where "1 if a < x < b

(ab) 10 otherwise

Thus,

E(t[x) - E(eNX1 I(Na2,o)(X2) x)

Now, N3 Q , 2

m

Thus, using 8a.2(v) Page 441, Ran [14], the conditional distribution of

(xI.x 2 ) given x is

(i(- 1 )N2 1
072 1

1

and the conditional correlation coefficient is (m) Therefore, the
conditional density of xj, X2 given x, after simplification, reduces to

2(m-2)[(X-X)+(x-x2)2 
(X1-X2) 2]

f(Xz,X2 1ý) I 2(m-2)62' x a.. e m
2) T-,-

Hence,

E(tlx) E(e-Nx1 I(N2, ) (x2 )1x)

"e-NXI (nm)1/2 1 2e (m 2 )aL((x l)+(;-x 2 ) m

-~No
2

. dx 2 dxl

r-Nx1 m -_I2 27r2_

e 2(m-2)o•2 (-x)m 1/)ll2 1 e 2(m-2)ar((XX2

-wo No2
- (XI-X2)2)

dx
2 dxl
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The exponent term, except for the constant, of the second integral, is

-x 2 ) 2  1-(x1 -- 2)2 _ -+x 2  x2 _ - -(x 2 + X2 2xx2)
X m 1 X2 --~

a 2m-I X2 Ia--[x - - X0)12

m mi l2

---TX- m

So that,
- /m m-i m - 1 xl))2

r2-m)1/2  -f--(x2- -- x - mj))
(2 7r) 1/2 (m 2 1/ T.. .2- F :x

(I) a(m-2) 1 Na rn-

2t
1 2 dt{ r m x 1 (2_r) 1 / 2 

e dtkN2 - T_-- x - - xl))

(where 1/k m2 1 2

I {k~ a2  - _- -N x ) .

Thus e m -211 1
E(tjr) -r- 2(m-2)az(x 12m rn- m-X)

• (m)i/2 __ __

1/ 12[1 - 4(Nko - m•--Tx - -_ xz)]dxz
(m-i)1/2 (20) 1/2r-

Simplifying the exponent term again

M___~*~3 ( -x 2  _ II+ ;2  X2i _M-2 1 X2 2 ;)m(_ -x +jx 
-X2x)

-- m 1 2M
-Nx' 2(mm-2)az Ix 2 + Xz - x

"- -Nxi T~ 2_)-jr.[2(m-l)x2 + (in-1)(l -1)x 
2 (mn-i)xtx - mx2

1 2+ 2xx]

-- + m xin + 2 (-) x

-- Nxi - i3W-- ---j-m-2x+- 2(m-2)xix]
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=-Nx 1 - 2( -TcJ[-2 + X -2,]

- m 2 ~n10)2- ~nla7C 2x - +
2(m-1)u

01 - N (rn-l)( 2 
)2 N N(M-1)a 2  

2 -
2(-Cylx X - M -Nx + xm

Therefore, N' N(M_1)0 2

ECLIX) e N 2mn

1/2 ink 1~-~21

- N2(rn-1)a a

-Nx -4-
2rn

( ) 1 / 2 11 2 m I Y " i -( - in
-w (r-I) 2r)1/2 (20 1/2 e dx

(rn-) D2r (Nkay2  - x- X,))

-~ rn1~ 1* i~){xi (X- N(rn~1)a2 )}2dx

-N + N2 (rn-1)a 2  1/2
-e 2mn r~ (in) 1/ 112 VNko2 rn-

(rn-i) 12(20 1/ a 1

- - f---x-"x- N(in-l)a 2 }
- 1 2Cm-1)a'' mCx - - dxi)

To evaluate the integral, use the transformation

xi- ( N(rn-1)0
2)

Xi - (X -
t so that

(m-1) 1/2~
01
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at + R - -;- o-
m

and the jacobian transformation is

dx -= ) 1/2odt.m

Thus the integral becomes

1 1 12
O-Nkcy" - -t + e at

(2r .[2 _ [NkF k M 1)112

"" k-- {(m-l); - (- '1 2  N/(m-1) 2+(2 )

- Nrn- i -- J()d (t)dt

"7[Nka ) - )k;+ k a/ - Nk a 2 (t)dt
-m(M-1) m)

0 (t)O[(( - I)NkG2 _-k + ka td

T 7 t(t)O(a + bt)dt

a-+ b2)/2

following 7.6.2, Page 35 of Owen [11] where

1/2

(m-2) a/2°

a- (1 -)Nka 2 - kx

M-i ( ) 1/21/2
" M -(N 2-/ ain (m.2)i/2 m- am-•



1- 112

01/
[re(m-1) I

(m-2) [m(m-l) 2 Im(m-2)] 1/2

Therefore, Nx M_(m_1) C.2-NT< + 2
=i+ - .(t fx) = e- 2 [1 - a(.)

(1 + b2)1/ 2 -)]

M/2 rn-t 1 /2 ,

-x + e(m_-) 1/2 ;-_-P Cy

+ - 1 /2[' + m(m-2)

SN(m-Ij /2) 12

-ix + 2m [1 - ) N -(m-)/2 xo(m-) lT4 .. ..

10(m) 1/2[m(m-2) + 1] 1/2

and the minimum variance unbiased estimate of q is, therefore,

+ (i2 2 (m-1)(a 2

1(m)i/2- -Nx + 2m (l-1 (-l3/2 No2 _- m(m-l) /2;

a a(M-1) >~ I C(m)1/
2 (1 + m(m-2)]I1/2

The maximum likelihood estimate of q when a is known is given as

-Nx +-X 22

q= ,(-,•) + e P[1- ¢(Na -

and thus as m becomes large, the minimum variance unbiased estimate is

asymptotically the same as the maximum likelihood estimate.

Coro llary9. r

Let Y1 ,...,Y N all he independent exponential random variables with

known parameter t, i.e., the density of Y's is given as
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SOt e- c~y y > O, at > 0

f~) 0 otherwise.

Also let X be an independent normal random variable with unknown mean V

and known variance 2 . Then, the minimum variance unbiased estimate of q

based on the random sample xl,...,x from X, is

1/2- -c + C + •N2(m_1)02 3/22
-(m)l/2 + 2m [1- (m-I) N2m(ml)lIx
-(in) +e[ o(m) 1/2 rl+m(m_2 )) 1/2 ]

Proof

Note that the c.d.f. of Y is

0 if x < 0
Ts -e-x if x > 0.

Thus,

q = j [I - G(x)] Nf(x)dx

= f(x)dx + fe f(x)dx

20

-~+ 012N 2a2
- + e 2 [ - ,,ao - and therefore

by replaceing N by aN in lemma 4.5 and in theorem 4.3, we get the desired

result.

Note that if p and a are both unknown in lemma 4.5, then the maximum

likelihood estimate of q is

- + R:+L
= (-X) + 2 (1- V(N - 2))
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mwhere x = I x ) 2m i -
a1

2 1 1
s M (XI )2

Also, if the parameter a is unknown iL Cor. 4.1 and the data

Ys ... 'Ylmi' .. '. YNIP' " "YNmN are available, then the maximum likelihood

estimate of q is

- 2 2 2x -yNx + _)]
= •(- s) + e 2  [1 - ýP(yNs -

S

where N S= -•il

mi

1 Y i=l,. , N•i =m-• J=l YiJ '

x and s are defined above.

4.5 Estimation of q when X is uniform and Yl,...,Y N are all Independent

Exponential

Let Y,,...,Y N be all independent and identically distributed with

the density function and distribution function given by (4.2) and (4.3)

respectively, and X be uniform random variable between 0 and 0, i.e.,

density function of X is given by

f(x) 0 < x < 0

0 otherwis ,

then we have the following lemma.
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Lemma 4.6

In above case

1 - eN
Ne

Proof

By lemma 4.3, we have

q ( [l - G(x)] Nf(x)dx

f e -NX

0

1- eN
Ne

Theorem 4.4

In this case the minimum variance unbiased estimate of q is

S, m 1 +.-i + 1 Nt(l M-1q ;R-t- M e - -- t),I

where t - max(xl,...,X m) and xl,...,xm is observed random sample distributed

as X.

Proof

-Nx l
Let u - e , then we obtain

E(u) - q.

Thus, since t is a complete sufficient statistic, in view of

Rao-Blackwell and Lehmann-Scheffe' theorems,E(ult) is the m.v.u. estimate

of q. The conditional distribution of xl given t is of mixed type and its

generalized probability density function with respect to mixture of Lebesgue

and counting measure is, as given by Patil and Wani (13],

/
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h(xit)1(

0 otherwise.

Thus, 
1tNX 1 1 1 -Nt

E(ult) = e i - T dxi + -m e

1 -Nt + M- ___e___

M-i +1 -Nt m-i
"mNt m N- ).

4.6 Nonparametric Estimation

Let X, Y, Z be independent random variables with continuous cumulative

distribution functions F, G1 , G2 respectively, and

q = Prob(X < Y and X < Z)

W Prob(X < T*),

where T* - min(Y,Z) and let H* be c.d.f. of T*.

Further, assume that

X ,...,xz , y p,... Oym , z , ... ,z n

are samples of X, Y and Z respectively. Then, the problem of estimating

q on the basis of samples of X, Y and Z is exactly similar to that of

estimating p - Prob(X < Z , Y < Z) discussed in Chapter III. However, the

main results are stated without proof in the following, since the proof

follows exactly in the same way as in Chapter III.
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Let i- 1 if xi < y

a0 otherwise

S1 if xi < Zk
bik - otherwise, where

i =1 . . ; J = , . m ; k =1,....,n .

Further, suppose that

Uijk ailbik , and

Sm n
W1 " i El jil kiUijk

number of triplets (x, Yj, zk) such that x < yj

xi < zk N

i.e., W1 counts the number of times an x precedes a y and a z simultaneously

in the arranged sample of Wx's, my's and nz's in ascending order. Then we

have the following results.

Lemma 4.7

q is an unbiased estimate of q.LUM

Proof

Uijk - 1 if and only if xi < y and xi < Zk so that E(Uijk)

P(xi < yj 9 xi < z - q, and the proof follows.

Example 4.1

Let k - 4, m - 3, n - 2, and consider the observations

X2 < YT < Z2 < Xa < Xof < yi < Za < Xt < Y2.

There are 3 values of x which are less than (yi, z2),

there is 1 value of x which is less than (Yi, z2),
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there are 3 values of x which are less than (Y29 Zl),

there is 1 value of x which is less than (y2, z2),

there is 1 value of x which is less than (ys, zl), and

there is 1. value of x which is )esr than (y3, z2).

Thus the experimental value of Wi is

w, 3 3+ 1 + 3+ 1+ 1 + I - 10,

and ^q- 1024

Also,

all - 1, a21 - 1, a31 - 0, aal - 1, a12 - 1, a22 - 1, a32 - 1,

aI2 - 1, a13 o 0, a23 o 1, ass - 1, a43 - 0,

and
b -i - 1, b2 l - 1, b 3 l - 0, bal - 1, b12 - 0, b22 - 1, b32 - 0

b4z - 0.

Thus,
S1 10

• £ E b a -
ni j k ij ik 24

Next, suppose that

S.F(T) a (F(t) - q) 2 dH*(t), and

-00

V2- . F(H*(x) - 1 + q) 2 dF(x).

Then, we have the following relations.

q - FF(t)dH*(t),

l-q - FH*(x)dF(x),
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FF2 (t)dH*(t) - q2 + 02 , and

L(l - H*(x)) 2dF(x) V2 + q2

Thus, we have the following results.

Theorem 4.5

The variance of W1 is given by

Var(Wi) - kmn[(mn-1)v 2 + (k-l)(m + n - 1)02 + (m + n - l)q

+ {(L-i)(m + n - 2) - l}q1j.

Lemma 4.8

-2 < q(l - q), and

V2 < q(l - q).

Theorem 4.6

^ is consistent estimate of q.

Proof
1

Var(•) = • Var(WO)

1 t[(mn-1)v2 + (1-l)(m + n - 1)02 + (m + n - l)q

+ {(W-l)(m + n - 2)- l)q2J

1+1 1+1 1
m n mn I._•) I q +n U

(using lemma 4.8)

- 0 as I, m, n-aQo.

The above results can also be generalized.



CHAPTER V

CONCLUSION AND FURTHER RESEARCH

The major goal of this dissertation is to discuss estimation of

the reliability of a component subject to several different stresses or

resistances over a time interval [0,T], i.e., the problem is to provide

the estimate of the probability that N random variables are simultaneously

less than a random variable, where all these random variables are mutually

independent. This probability has been called p, and its dual probability,

q, as defined in Chapter IV. Parametric and nonparametric methods of esti-

mation were considered.

In a very few cases, it was possible to derive the minimum variance

unbiased estimates, whereas in other cases the derivation of the mini-

mum variance unbiased estimates remain an open question. For example,

in Theorem 4.3, if a is also unknown, which is the more realistic case,

we could not derive the minimum variance unbiased estimate. The problem

lies in finding the m.v.u. estimate of F(co2 ), where c is a constant,

and F is cumulative distribution function of a normal variate with mean

M, and variance a0. More generally, if x is a function of V and a2 ,

then the m.v.u. estimate of F(x) has not yet been found to the beat of

our knowledge except when 02 is known.

The statistic W based on ranks of the pooled sample was suggested

to eatimate p unbiasedly and was shown to have certain optimum proper-

-52-
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ties. It is felt that the statistic W is of much importance, because

only the assumption of the continuity of the cumulative distribution

function is needed. However, the results could be extended to the dis-

continuous case with slight modifications. It is not easy to compute W

especially when the number of observations available on each random

variable is large, even In the case of N(number of random variables) - 2.

Though the use of the statistic W has been limited only to estimate

p in this dissertation, it could be used to test the hypothesis that the

random variables Xi,...,XN,Y have the same continuous cumulative distri-

bution function against the alternative that Y is stochastically larger

than the N random variables Xl,...,XN simultaneously, i.e., Y is sto-

chastically larger than the maximum of X1,...,XN. This particular use

of the statistic W and possibly some other uses are open for further

research. We are presently investigating this particular use of the W

statistic for the special case N - 2, and as a critical region for the

hypothesis, it is proposed to use W < K, where K is chosen to give the

correct significance level. Properties of this test function, the dis-

tribution of the statistic W under the null hypothesis, approximation to

the normality, a comparison with Whitney's [17] result, etc. are under
S

consideration. Properties of this test function for the general case

and other uses of the statistic W are yet to be explored.

• m n ...
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